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The description of 3-space as a spacelike 3-surface of the space H = M 4 • CP 2 
(product of Minkowski space and two-dimensional complex projective space 
CP2) and the idea that particles correspond to 3-surfaces of finite size in H are 
the basic ingredients of topological geometrodynamics, an attempt to a geometry- 
based unification of the fundamental interactions. The observations that the 
Schrrdinger equation can be derived from a variational principle and that the 
existence of a unitary S matrix follows from the phase symmetry of this action 
lead to the idea that quantum TGD should be derivable from a quadratic phase 
symmetric variational principle in the space SH, consisting of the spacelike 
3-surfaces of H. In this paper a formal realization of this idea is proposed. First, 
the space SH is endowed with the necessary geometric structures (metric, 
vielbein, and spinor structures) induced from the corresponding structures of 
the space/4. Second, the concepts of the scalar super field in SH (both fermions 
and bosons should be describable by the same probability amplitude) and of 
super d'Alambertian are defined. It is shown that the requirement of a maximal 
symmetry leads to a unique CP-breaking super d'Alambertian and thus to a 
unique theory "predicting everything." Finally, a formal expression for the S 
matrix of the theory is derived. 

1~ I N T R O D U C T I O N  

T o p o l o g i c a l  g e o m e t r o d y n a m i c s  ( T G D )  is a g e o m e t r y - b a s e d  a t t e m p t  to 

un i fy  the  f u n d a m e n t a l  i n t e r ac t i ons  b a s e d  on  the  i d e a  tha t  c lass ica l  space-  

t i m e  can  be  r e g a r d e d  as a s u b m a n i f o l d  o f  s o m e  h i g h e r - d i m e n s i o n a l  space  
H (P i tk~nen ,  1981, 1983). O n c e  the  p o s t u l a t e  a b o u t  r e p r e s e n t a b i l i t y  as a 

s u b m a n i f o l d  is a c c e p t e d ,  o n e  is l ed  r a the r  n a t u r a l l y  to t he  f o l l o w i n g  scenar io .  

(1) T h e  c o n c e p t s  o f  pa r t i c l e  and  3 - space  g e n e r a l i z e  and ,  in a ce r t a in  

sense ,  a re  un i f ied .  Par t ic les  ( in a ve ry  g e n e r a l  sense  o f  the  w o r d )  are  iden t i f i ed  

as s p a c e l i k e  3 - su r faces  o f  H so tha t  a t o p o l o g i c a l  c lass i f ica t ion  o f  pa r t i c l e s  
a n d  pa r t i c l e  r e a c t i o n s  emerges .  C lass ica l  3 - space  w i t h  pa r t i c l e s  is i den t i f i ed  

as a t o p o l o g i c a l l y  t r iv ia l  3 - sur face  to w h i c h  the  pa r t i c l e l i ke  3 - su r faces  a re  

" g l u e d . "  
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(2) The natural requirement that isometries of the space H are sym- 
metries of  the theory leads to the identification of the space H as the 
Cartesian product  M 4 • C P  2 of Minkowski space and of  the space CP2 the 
complex projective space (Eguchi et al., 1980; Gibbons and Pope, 1978). 
The isometry group of the space CP2 is identified as a color group. Thus 
one can identify color gravitational interactions as interactions coupling to 
the isometry charges of the space H. 

(3) The so-called induction procedure allows to define gauge potentials 
on the submanifolds of H as field quantities induced from the spinor 
connection of  the space H. It turns out that these gauge potentials can be 
identified as electroweak gauge potentials. 

(4) The geometrization of the spectroscopy is achieved. The choice 
explains the quantum numbers associated with a single-particle family and 
family replication phenomenon has a natrual topological explanation. One 
can imagine several dynamical scenarios in which either leptons or quarks 
or both appear  as elementary fermions. In the simplest dynamical scenario 
found thus far leptons are the only elementary fermions and we regard this 
scenario as the most feasible one. 

Concerning the form of the quantum dynamics based on this general 
framework perhaps the most important achievement hitherto is the realiza- 
tion that the formulation of the theory, whatever it may be, should be free 
of  arbitrary physically relevant parameters. Thus all dimensional parameters 
(gravitational coupling, masses , . . . )  should be related to the length scale 
of  CP2 by some predictable dimensionless numbers (scale invariance is 
broken by the curvature of  CP2). Also dimensionless couplings should be 
predictions of  the theory. 

The use of  the conventional quantization methods to construct a quan- 
tum theory, which "Predicts everything," is highly questionable since these 
methods typically describe interactions as nonlinearities in the a c t i o n  
defining the theory so that various coupling constants are arbitrary para- 
meters at least at the classical level. 

Indeed it must be admitted that the functional integral method has 
generated only semiclassical arguments but not a calculable quantum theory; 
even a formal proof  for the existence of a unitary S matrix is missing. A 
probable reason to this circumstance is that the concept of the functional 
integral makes sense only as a perturbative treatment of conventional field 
theories. 

These experiences suggest that the difficulties are not only technical 
but that the underlying philosophy is in some way wrong. Indeed, one can 
argue that the idea of  constructing quantum theory by first postulating 
classical action and then quantizing it through some more or less unique 
rules is wrong. 
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The quantization philosophy adopted in this paper is in concise form 
"Do not quantize!". The new line of thought is based on the following 
observations: 

(1) The ordinary Schr6dinger equation is obtained from a variation 
principle (Appendix) and the associated action is quadratic with respect to 
the probability amplitude. 

(2) The existence of a Hilbert space scalar product and of a unitary 
S matrix results from the conservation law of probability, which in turn 
follows from the phase symmetry of the quadratic action. 

From these observations we abstract our basic receipe of a quantum 
theory: 

(1) Assume the existence of a configuration space SH endowed with 
metric structure (spacelike submanifolds of H). 

(2) Postulate a variational principle for the probability amplitudes 
defined in SH with the property that the associated action is quadratic with 
respect to the probability amplitudes and invariant under phase symmetries. 

This idea is the only completely new ingredient in our approach. The 
action principle is fixed to high degree by requiring the following: 

(3) The probability amplitudes are geometric objects and the action 
is defined by a Lagrangian density invariant under the coordinate transfor- 
mations of the space SH. 

More concretely, the quantum equations of motion should correspond 
to "massless" (no free physically relevant parameters) d'Alambert type 
equations in configuration space endowed with a metric. 

Furthermore it is natural to assume the following: 
(4) The geometry of the configuration space (spacelike 3-submanifolds 

of the space H) is induced from the geometry of H (metric, Riemannian 
connection, and spinor structure). 

Since the state functionals must be capable of describing both bosons 
and fermions and states of arbitrarily high fermion number it is natural to 
postulate the following: 

(5) A state functional is a Grassmann algebra valued "scalar 
superfield" (Hawking and Pope, 1978; Volkov, 1973; Wess and Zumino, 
1974; Stelle, 1983). The generators of the Grassmann algebra ("theta para- 
meters") in a given point of the configuration space (3-submanifold of H) 
are in one-to-one correspondence with a complete spinor field basis defined 
in the corresponding 3-manifold of/4. 

The success of this program would mean that a linear theory containing 
no physically relevant free parameters would produce a nontrivial S matrix. 
In order to understand how this is possible consider the structure of the 
configuration space SH. SH is obtained by glueing together spaces SH(t, n) 
corresponding to 3-manifolds with a given number of components ("particle 
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number")  with given topologies t. The points common to SH(tl, m) and 
SH(t2, m) correspond to surfaces topologically intermediate between mani- 
fold topologies t l  and t2 and are singular as manifolds. 

Consider now a state functional corresponding to a well-defined particle 
number  n and thus restricted to SH(n). The uncertainty principle in SH(!) 
implies that this state cannot be stationary but begins to disperse to other 
parts of  SH with different particle numbers. Clearly, this process leads to 
occurrence of  particle reactions. 

The plan of  the paper  is as follows: 
In Section 3 we discuss the problem of  defining SH as manifold and 

propose an induction procedure to obtain metric and spinor structures in 
SH from those of the space H. 

In Section 4 we consider the definition of a scalar superfield in SH. 
We construct the formalism in finite-dimensional case first and then perform 
a generalization to the case of  SH. It turns out that the requirement of  
maximal symmetry leads to an essentially unique super d 'Alambert ian 
characterized by the so-called Abelian super gauge invariance. 

In Section 5 we show that in case of  H = M 4 • CP2 the K/ihler structure 
of  CP2 makes possible a CP-breaking term in the Super d 'Alambert ian and 
that the requirement of  maximal symmetry fixes this term uniquely. 

Section 6 is devoted to the construction of  the S matrix. The so-called 
bare states are defined as state functionals restricted to a subset SH(t) or 
SH consisting of surfaces with fixed manifold topology t. Stationary states 
are defined as continuations of  the bare state functionals to state functionals 
in the whole SH. A formal solution of the continuity conditions is derived 
and conditions guaranteeing the uniqueness of  the continuation are 
deduced. Finally, an explicit expression for S matrix as a unitary matrix 
transforming bare states to stationary states is derived. 

2. N O T A T I O N  

Symbol 
H = V x S  

M4/Mr 
C P 2  

h k / m k / s  k 
~k, ~k, k = l , 2  

x ~ 1 6 2  ~ 

k k k 

Meaning 
imbedding space, which is Cartesian product of  V 
and S 
Minkowski space/l ight cone of Minkowski space 
complex projective space of complex dimension 2 
coordinates for space H/M4/S 
complex coordinates for CP2 
coordinates for the in ter ior /boundary component  of  
a submanifold X 3 
partial derivatives of  the coordinate variables of  
H/M4/S with respect to the coordinate variables of  
X 3 
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hk,/ rnkl/ skt 
A ek 

Vk/ Bk/ Ak 

V~,/ J~/ F~, 

g,~ = hklh ~o, h tlr 
V~/B,~/A,~ 

H k = g'~r162 
Fk 
r~ = rkh~ 

~A~ = IrA, r~] /2  

Dk/ D~ 
X ~ 
Int X 3 
8iX 3 
X 
TI/ NI/ Td N~ 
pk/ 
p~ 
SH 
SH(t)  
SH(t, n) 

SH( t l ,  t2) 

H,(X) 
H~(X) 

Hs,,(X) 

H,(X ~) 
{ 6~}/ {f'2}/ { 0~} 

K = (k, x ) / L =  (1, y) 

H_rd. ~ Hk~(x, y) 
A ek 

components of the metric tensor for H / M 4 / S  
components of the vielbein in H 
components of vielbein connection/Kiihler potential 
in CP2/spinor connection in H 
curvature form of vielbein connection/Kiihler 
form/curvature form of spinor connection 
induced metric in X 3 
induced vielbein connection/Kiihler potential/spinor 
connection in X 3 
second fundamental form for X 3 
trace of the second fundamental form 
gamma matrices for the space H 
gamma matrices for X 3 
fiat space gamma matrices 
fiat space sigma matrices 
modified gamma matrices of the space H 
covariant derivative in H / X  3 
n-dimensional submanifold of H 
interior of X 3 
ith boundary component of X 3 
common symbol for Int X 3 and 6iX 3 
Tangent/normal space of Int X 3 / 3 X  3 
Projection operator to N~ 
Projection operator to Tx c~ N~ 
space of the spacelike 3-surfaces of H 
set of 3-submanifolds of H with topology t 
set of 3-submanifolds of H having n components 
with fixed topologies 
set of 3-surfaces having topology intermediate 
between the manifold topologies tl  and t2 
Hilbert space spanned by scalar functions in X 
Hilbert space spanned by H-vector fields orthogonal 
to the surface X 
Hilbert space spanned by the H-spinor fields in X 
(X = Int X3/8iX 3) 

direct sum of Hilbert spaces Hi(X)  (i = S, V, sp) 
complete basis in the Hilbert space 
Hs(X) /  Hv(x)/  Hsp(X) 
shorthand notation for the indices of the various 
tensor quantities defined in SH(1) 
metric tensor for SH(t,  1). 
X part of vielbein of SH(1) (X = Int X3/~iX 3) 
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* = ( A ,  m) 

Vk/ Bk/ Ak 

OK 
FK 

FK 
GR(X 3) = ~ GR(X) 

X 

~ot Ox, Ox 

S/S~,~ 

D~/D~ 
[] 
Sin(t) 

sT(t) 

shorthand notation for vielbein index; A refers to the 
components of H vielbein; m refers to an element of 
complete basis of scalar fields in X 
vielbein connection/K~ihler potential/spinor connec- 
tion in SH(1) 
spinor covariant derivative in SH(1) 
gamma matrices in SH(1)  
flat space gamma/sigma matrices in SH(1) 
modified gamma matrices in SH(1) 
spinor Grassmann algebra of X 3 representable as a 
direct sum of Grassmann algebras GR(X) ( X =  
Int X 3, 6i X3) 
theta parameters spanning spinor Grassman algebra 
GR(X). 
super scalar f ield/component of the super field in 
shorthand notation 
super covariant derivatives 
super d'Alambertian 
bare state functional corresponding to given 3-mani- 
fold topology t 
stationary state functional obtained as a continuation 
of  Sin(t) 

3. ABOUT THE STRUCTURE OF THE CONFIGUATION SPACE 

The general structure of  the configuration space will be the topic of 
this section. We shall discuss the topological structure of the configuration 
space and perform the generalization of the finite dimensional differential 
geometry to "functional differential geometry" in space SH by defining 
metric, vielbein, and spinor structures in SH as structures induced from 
the space H. 

3.1. The Topological Structure of the Space 814 

In this section we define the concept of the configuration space SH as 
the set of the spacelike 3-surfaces of the space H. A definition of the "allowed 
surface" is proposed; various physically interesting subsets of SH are 
defined and finally a representation of the space SH as a union of these 
subsets is given. 

3.1.1. The Concept of the Surface 

First it should be emphasized that the definition of the configuration 
space differs from that used in quantum mechanics since we do not pose 
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the restriction that the surfaces are in, say, a spacelike hyperplane of H. 
We only require that the connected components of the 3-surfaces are 
spacelike, that is, the induced metric on the surface is everywhere spacelike. 

Concerning the definition of the surface concept the following remarks 
should be made. 

(i) By submanifold we mean an imbedding of a manifold to H. The 
manifold can have several connected components and each component can 
have several boundary components. 

(ii) The concept of the surface is more general than that of a submani- 
fold. What is required that surface is locally manifold at almost all its points. 
Thus surface can have self-intersections and pinches, etc. In Pitk~inen (1981, 
1983) we have discussed the description of the particles as submanifolds 
of H. 

(iii) The singular submanifolds of H, which correspond to topology 
changing transitions of 3-manifolds, have a central role in the description 
of the interactions in TGD. These surfaces are intermediate between two 
manifold topologies. Examples of the singular manifolds are the surfaces 
intermediate between (1) sphere and a union of two disjoint spheres, (2) 
torus and sphere, and (3) sphere with one and two holes, respectively. 

We have proposed a rough classification of the various topology 
changes and discussed the description of various particle reactions in terms 
of the intermediate topologies (PitkSnen, 1981, 1983). It is natural to require 
that all allowed singular surfaces have topologies intermediate between two 
manifold topologies. 

One can also pose restrictions on the nature of the topology change. 
A possible restriction of this kind is that the topology change is localized 
so that the intermediate surface fails to be a manifold in a finite set of 
points. This requirement would exclude the so-called # 8 vertex introduced 
in earlier publications (Pitkiinen, 1981, 1983). 

3.1.2. Various Subsets of  SH 

On physical grounds one expects that the subsets of S H  consisting of 
submanifolds of S H  with a fixed topology are of same dimension than S H  
itself and that the subsets consisting of singular manifolds in some sense 
form a "measure zero" subset of SH. In the following we give a more precise 
formulation of these intuitive notions. 

The idea that submanifolds with a fixed topology form a subset of S H  
having the same dimension as S H  derives from their property of being 
open sets of SH. That these sets are open following from the invariance of 
the property of being submanifold with a given topology under small 
deformations of the surface. 
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The following subsets of  SH are obviously open: 

SH(t)--set of manifolds with a given topology t 
SH(t, n) = set of  manifolds having n disjoint components  with given 
topologies. 
SH(n)=set of manifolds with n components  and with arbitrary 
topologies 
SH(t, n, rnl,..., ran)=set of n-component  3-manifolds, the kth com- 
ponent  having rnk boundary components.  

The subsets of  SH consisting of surfaces, which are singular as submanifolds 
of  H are not open since an arbitrary small deformation can lead to a final 
state, which corresponds to manifold topology (perform a small deformation 
near the "react ion vertex"). We shall denote by the symbol SH(tl, t2) the 
set of  3-surfaces having topologies intermediate between the manifold 
topologies t l  and t2. 

Since the singular manifolds are in a certain sense limiting cases of  
regular manifolds, the sets SH(t, t2) for a given t must belong to the 
compactification of the set SH(t), which we shall denote by the symbol 
SH(t); in other words the boundary of SH(t) is given by 

3SH(t) = U SH(t, t l )  ( la)  
t l  

It is also clear that the sets SH(tl, t2) can be represented as the intersections 
of  the compactifications SH(tl) and SH(t2): 

SH(tl, t2) = SH(tl) n SH( t2) ( lb)  

With these identifications one can regard SH as a manifold obtained by 
glueing the sets SH(t) together along their common boundaries [the subset 
SH(tl, t2) and SH(t2, t l )  are identified in the union of SH(t)]: 

SH = U SH(t) ( lc)  
t 

There is a relationship between the sets SH(1)  and SH(n): namely, to each 
element of  SH(n) (disjoint union of n manifolds) there corresponds a 
unique element in the set SH(1)  x SH(1) x .  �9 �9 x SH(1)/S,, where n is the 
number  of  the factors in the product and S, is the permutation group of  n 
objects. 

The division by Sn means identification of all elements obtained from 
sl • s2 • �9 �9 �9 x sn by permuting the surfaces Sk, k = 1 , . . . ,  n. The identification 
of  the different permutations derives from the communtativity of  the set 
theoretic union. 

This kind of relationship between one-particle and many-particle 
configuration spaces is encountered already in ordinary quantum 
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mechanical treatment of a many particle system. The euclidian 3-space E 
is the configuration space for a point particle and the space E x E x- �9 �9 x 
E/Sn is the configuration space for n particles. In practice one can use the 
configuration space E x E x . . .  x E and assume the state functions be 
completely symmetric~completely antisymmetric under particle exchanges. 
The completely antisymmetric state functions correspond to double-valued 
state functions in real configuration space. 

The above-mentioned correspondence is important since the assump- 
tion about the symmetry properties of the state functions reduces the 
geometrization of the space SH to the geometrization of SH(1) since the 
geometry of SH (n) is essentially that of the Cartesian product of n SH (1): s 
locally. 

3.2. Metric Structure in S H  

3.2.1. General Considerations 
The above-mentioned relationship between SH(n)  and the Cartesian 

product of n SH(1) : s reduces the geometrization of SH to that of SH(1). 
The basic philosophy in the following developments is that the geometry 
of SH is induced from that of the space H. We shall derive the metric 
tensor of SH(1) from the expression for the line element at a given point 
of SH(1) (submanifold of H). The expression for the line element is derived 
by studying small deformations of a given 3-manifold. 

Because the manifolds considered in general have arbitrary number of 
boundary components there are two basic contributions to the metric corre- 
sponding to the deformations changing the interior and boundary com- 
ponents of the 3-manifold, respectively. 

Since the tangential part of the interior deformation does not change 
the surface but gives rise only to a coordinate change it is clear that only 
the normal space (denoted by Nr) projection of the deformation contributes 
to the line element. 

In a similar way, only the projection of the boundary deformation to 
the normal space N~ of the boundary contributes to the line element. In 
addition, in order to avoid double counting, the relevant part of the deforma- 
tion must belong to the tangent space T1 of Int X 3. Thus only the projection 
of the boundary deformation to the one-dimensional dimensional space 
Tr c~ N~ contributes to the boundary part of the line element. 

3.2.2. Derivation of the Line Element 

To derive the interior contribution to the line element at a given point 
of SH(1) we make the following assumptions: 
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(a) The line element is integral over the contributions coming from 
infinitesimal coordinate volumes d3x. 

(b) The contribution of an infinitesimal volume element is the 
orthogonal distance between the infinitesimal surface corresponding to the 
volume element and the infinitesimal surface obtained by performing a 
displacement dh k. 

Dividing X 3 in small cells with coordinate volumes DV,, = d3xn and 
using the assumptions one obtains the following expression for the line 
element: 

D S  2 = lim ~ Pk,(dh k d h l / d V . )  dV.  (2a) 
n 

pk l=  t, kt .a~t,k t,l (2b) 
t# ~ , t l a t t l f l  

The operator pk~ is the projection operator to the normal sPace N~ of Int X 3. 
Clearly, the end result is meaningful only if it is sensible to speak about 

the density of  the line element. This in turn implies that the limits 

D H k ( x )  = lim dh k(xn)/  ( dV . )  1/2 (3) 

must exist. 
We shall call the quantities D H  k deformation half-densities (analogous 

to the coordinate space wave functions in quantum mechanics). 
It is easy to verify that the end result is invariant under the coordinate 

transformations of X 3 (by dividing deformation half-densities with the 
fourth root of the metric determinant and by multiplying the volume element 
by square root of the metric determinant one obtains a manifestly coordinate 
invariant expression for the line element). 

The contribution of a given boundary component to the line element 
has the same formal structure as the interior contribution: 

[ + k , DS~ = PkIDH+DH~ d2~ (4a) 
t t  

p~l .,~t~t,k t,t __.~vt.k t, (4b) 
- - d b I  t t l a t t l ~ 8  ~ t t l g t t l u  

The operator P~tprojects to the space T~ ~ N+. The subscripts I and $ refer 
to interior and boundary metric, respectively; the subscripts (a, fl) and 
(/x, v) refer to the coordinate variables of interior and boundary component 
respectively. 

3.2.3. Identification o f  the Metric Tensor 

Expressing the deformation as a sum of the interior and boundary parts 

DH k = DH~ + DH~ (5) 
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and assuming that the imbedding of the ith boundary component  is given 
in the form 

x ~ = f~ (~c~) (6) 

where ~ denote the coordinate variables associated with the boundary 
component,  one obtains the following expression for the line element 

= I Hk,(x, y)DHk(x)DHt(y) d3x d3y (7a) DS 2 

Hk,(x, y) = 63(x, y)P~,+~ f ,S3(x,f(~))63(y,f(O)P~,l d2~ (7b) 

The quantity Hkz(x, y) is analogous to the metric tensor defining the metric 
for finite-dimensional spaces. Contraction and raising of indices can be 
performed using the covariant form of the metric obtained by raising the 
indices of  the projection operators using the metric of  the space H. 

Tensor Hk~(x, y) differs from the ordinary metric tensor since the mixed 
tensor is not equal to unit matrix. In fact this tensor has no inverse since 
it annihilates the deformations tangential to the surface (which do not 
change the surface). Irrespective of this quantity is very useful since one 
can construct the differential geometry of SH using this quantity and without 
introducing any explicit coordinates for the space SH. 

In the following we shall use the shorthand notation HKL for the metric 
tensor, indices K and L referring to pairs (k, x) and (l, y), respectively. The 
formal summations over the index K are understood as integrations over 
the coordinate variables and summations over the index k. 

3.3. Vielbein Structure in S H  

Let us first state the definition of the vielbein in the finite-dimensional 
case (Eguchi et al., 1980). 

A vielbein at a given point of  a finite-dimensional space H is a complete 
set of tangent vectors at each point of  finite-dimensional space with the 
property the scalar products with respect to flat tangent space metric generate 
the components  of the metric tensor. 

In order to obtain a globally defined vielbein one must assume the 
orientability of  the manifold H. In performing the generalization we shall 
assume that the space SH is also orientable. 

Instead of the straightforward formal generalization of this definition 
we define the vielbein so that it generates the metric tensor HKL. 

(a) Let X denote either interior or one of the boundary components 
of  X 3 and let {f~} be complete sets of real-valued functions defined in X 
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satisfying the completeness and orthogonality relations 

Y~ f'~(x)fm(y) = ~3(X, y) (8a) 
m 

f fm(x)f~(x) dV = 6"'" (8b) 

Observe that the functional derivatives of the functions f ~  vanish because 
they have not dependence on the coordinate variables h k. 

(b) Define the vielbein associated with the interior of  X 3 through the 
formula 

E~K =-- EA'm(X) = ep P~f'~(x) (9) 

(here the shorthand notations A-- (A, m) and K = (k, x) are used). 
(c) Define the vielbein associated with the ith boundary component 

via the formula 

f E~= E2"m(x) = 6(x,f(~))e~P~kf'~ d2~ (10) 

It is easy to verify that these vielbeins generate the metric tensor in the 
sense that the equations 

_ E K E  L : H K L  (11) 
A 

hold true. 

3.4. Induction Procedure for Connections 

3.4.1. General Considerations 

In finite-dimensional case the defining condition of the metric (vielbein) 
connection is the covariant constancy of the metric (vielbein) with respect 
to the covariant derivative defined by the connection (Eguchi et al., 1980). 
This condition is a natural defining condition also in the infinite-dimensional 
case. 

For practical reasons we define metric and vielbein connections by 
requiring the covariant constancy of the metric tensor HKL and the associated 
vielbein. 

The covariant constancy conditions are formally same as in the finite- 
dimensional case and given by 

HRHr,:LIR+[~ R ]~HRL_[_ ~ R "~HRK_= 0 (12) 
[ K M J  I L M J  
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and by 

DLE~ + { LMK} E~ + V~c~E~=O (13) 

for the metric and vielbein, respectively. 
Also the solutions to these conditions are formally similar to those of  

the finite-dimensional case. The Christoffel symbols and the components 
of  the vielbein connection are given by 

{ LMK }=HKR(HRLIM+HRMIL_HLMIR)/2 (14) 

and by 

V[, = _ E ~ I ~ E f  _ I M 1  ~ ~, LK~EME~ (i5) 

respectively. 

3.4.2. Evaluation of the Functional Derivatives 
In order to evaluate explicit expressions for metric and vielbein connec- 

tions one must derive formulas for functional derivatives appearing in the 
formulas defining them. The expressions for the functional derivatives are 
obtained by studying variations of the metric and vielbein under certain 
type of deformations of  X 3. 

It is natural to assume that the allowed deformations of  X 3 consist of  
two parts; the interior part  and boundary part. Furthermore, we can assume 
that interior part of  the variation is orthogonal to Int X 3 and boundary 
parts of  the deformations belong to the space 7"1 c~ Ns. This means that the 
variation dh k can be written as a superposition of  the interior and boundary 
parts 

ah k = a h k +  ah k (16a) 

~h~llN, (16b) 

~h~ll TI c~ N~ (16c) 

It is important to notice that the variations are now densities and not half 
densities as in the case of  the definition of the line element. Boundary 
variations are also more singular since they have coordinate length 
dimension - 2  as opposed to the interior variations, which have coordinate 
length dimension -3 .  

Since we shall need only the functional derivatives of  the metric and 
vielbein we can assume that the quantity under study is local and depends 
only on the coordinate variables of H and their first derivatives. 
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In order to derive expressions for the functional derivatives of the 
quantity S(x) express the variation of this quantity in the form 

8S(x) = ~ (SS(x)/ Shk(z))ghk(z) da z (17) 
X 

and identify the coefficients of the deformation densities (not half-densities !) 
as the partial functional derivatives. 

Explicit expressions for the functional derivatives are obtained by 
directly calculating the variation of the quantity S(x) 

~S(x) k ~ k = Ak~hi+Bk6htl,~+~ Ckt3h~l~p. k (18a) 

OS 
A k -oh  k (18b) 

OS 
B~ Ohlk (18c) 

OS 
C~ -Oh~, (180) 

(recall that indices a and /x refer to the coordinate variables of interior 
and boundary, respectively). 

The terms containing the derivatives of the variation can be transformed 
away by using the fact that in the cases of interest the quantities B~ and 
C~ are parallel to Int X 3 and 8X 3, respectively. Thus one can write the 
variation in the following form: 

t~S(x) = LkSt~hk(x) (19a) 

Here the quantity LkS is the Lagrangian derivative of S defined by 
l a 1 /~ LkS = Ak -- PikBlj~ -~, P~kCII. (19b) 

8 

From this expression we obtain the formula for the functional derivative 
of S(x) applicable to the present situation: 

3S(x)/ 3hk(z) = tkS(x)6B(x, z) (20) 

3.4.2. Explicit Expressions for Metric and Vielbein Connections 

The explicit formulas for the components of the metric connection are 
given by 

{ LMK }=t~3(x,y)t33(y,z)Akm(x ) (21a) 
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A~,.(x) kr s t = P  PtPm(Btsr+Usrt-Brst)/2 (21b) 

Bklm = LkPmt (21c) 

Pk~(X) = P~,(x) -~  f ~3(x,f(~))P~t(~) d2~ (21d) 
3 

The action of the Lagrangian derivative Lk is defined by the formula (19). 
The explicit representation of the vielbein connection is given by 

V / ~ / ~ :  r A. l m A k Pk(LrEI Ea+ Ak, tEmEa) (22) 

Here a shorthand notation for the components of the vielbein is used [see 
equations (10)-(11)]. 

3.5. Spinor Structure in S H  

In this section we shall define spinor structure in SH(1). The definition 
of the various concepts involved (spinor field, gamma matrices, spinor 
connection) is based on the straightforward generalization from the finite- 
dimensional case (Eguchi et al., 1980). 

3.5.1. Generalization of the Spinor Field Concept 

In the following we assume that the concept of spinor as a representa- 
tion of the spin group of the n-dimensional manifold is familiar to the 
reader. The spinor bundle is defined as a bundle having as fiber the spinor 
space V associated with space H and as base the manifold H itself. 

A spinor field is a section in this bundle, i.e., a map from H to the 
spinor bundle commuting with the bundle projection. If the bundle is trivial 
the spinor field is simply a map from H to the spinor space; in general 
case this representation is possible only locally (in some open neighborhood 
U of the given point of  H).  

Given the local representation of the spinor field as a map from H to 
the spinor space in some open set U c H, one obtains the component 
representation of the spinor field by expanding the spinor field in a complete 
orthonormalized spinor basis introduced at each point of U. 

To perform the generalization notice that the point of the space SH(1) 
corresponds to a spacelike 3-manifold with arbitrary many boundary com- 
ponents. Furthermore, the spinor structure of the space H induces a spinor 
structure in the interior and on the boundary components of the 3-surface 
X 3. The definition of the induced spinor structure is considered in earlier 
papers (Pitk/inen, 1981, 1983). Obviously, one can regard the spinor fields 
on interior and on the boundaries as restrictions of  H-spinor fields. 
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A natural generalization of the spinor space associated with a given 
point of H is the direct sum of Hilbert spaces Hsp(X) spanned by the 
H-spinor fields associated with Int X 3 and the various boundary com- 
ponents (we shall use the common symbol X for the interior and various 
boundary components of X3). 

Hsp(X 3) = @ Hsp(X) (23) 
X 

The scalar product of the spinor fields 4'1 and ~02 in the Hilbert space Hsp(X) 
is defined by the integral 

( 6~, tP2) : f x  tp*~(x)~O~(x) dV  (24) 

The Hilbert space Hsp(X) is assumed to have a complete orthonormalized 
spinor bases {4J7} so that the conditions 

(07,  62) = 8 " "  (25a) 

O*,,,,~(x)Omt3(Y) : 8(x, Y)Sa, t3 (25b) 
m 

are satisfied. 
We define spinor field in SH(1) locally as a map, which associates 

with Int X 3 and each boundary component an H-valued spinor field. In a 
more careful treatment one should define spinor field in SH(1) as a section 
in the "bundle"  having SH(1) as a base space and the direct sum of the 
Hilbert spaces H~p(X) as a fiber. The bundle formulation is not expected 
to be a completely trivial task since the Hilbert associated with topologically 
nonequivalent 3-manifolds are not expected to be isomorphic [for example, 
the number of  summands in the direct sum representation of Hsp(X 3) varies]. 

A component  representation for the spinor field in SH(1) is obtained 
by expressing the H-spinor fields associated with Int X 3 and various boun- 
dary components in the basis {Ox}. Thus the components of the SH(1) 
spinor field are analogous to Fourier coefficients of the ordinary spinor field. 

3.5.2. Gamma Matrices in SH(1) 

We assume that the definition of the gamma matrices for finite- 
dimensional curved space is familiar to the reader. We shall define the 
infinite-dimensional gamma matrices by requiring that they generate the 
metric tensor HKL rather than the proper metric tensor. 

Thus the defining anticommutation relations are given by 

{FK, FL} = 2HKL (26) 
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One can represent gamma matrices using the vielbein coefficeints E A and 
flat space gamma matrices ya  acting in the Hilbert space Hsp(X3): 

FK = EAyx (27) 

{Ya, Y~} = 2Eaa, old (28) 

Here the matrix Id is an identity matrix in Hsp(X3). The parameter E equals 
to +1. 

The construction of the representation for the flat space gamma matrices 
ya  as operators in the space Hsp(X 3) is an important task to be performed. 

3.5.3. Spinor Connection in SH(1) 

In the finite-dimensional case spinor connection is obtained simply by 
lifting the vielbein connection with gauge group SO(n) to a connection 
having as gauge group the spin group Spin(n), the covering group SO(n) 
(Eguchi et al., 1980). 

In practice this means the definition of the spinor covariant derivative 
via the formula 

Dk = Ok + Vk (29a) 

Vk = vABE,~/2 (29b) 

Here the quantities vAB are the coefficients of the vielbein connection. 
In the case of H -- M 4 x CP2 the life is not so simple. Since CP2 does 

not allow conventional spinor structure (the lift of  the vielbein connection 
to spinor connection is not well defined). As explained in Pitk~inen (1983), 
Eguchi et al. (1980), Gibbons and Pope (1978), Hawking and Pope (1978), 
one can however define a generalized spinor structure in M 4 x U P  2 by adding 
an additional U(1) gauge potential to the spinor connection. The U(1) 
potential is an odd multiple of the K/ihler potential, which generates the 
KShler form in C P  2. 

A naive guess is that the spinor connection for SH(1) contains, not 
only the vielbein part, but also an additional term and that this term is 
obtained by inducing the K/ihler potential to a gauge potential in SH(1). 

A possible way to induce the K~hler potential to the configuration 
space is based on the following requirements. The induced K/ihler potential 
[BK = B k ( X ) ]  (i) must have parts B x corresponding to interior and boundary 
components of X 3, (ii) must be proportional to the projection operator P• 
of P~ since pure coordinate transformations cannot contribute in parallel 
translation, and (iii) must change by a gauge transformation in a gauge 
transformation of the Kfihler potential (gauge invariance of the induction 
procedure). 
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It is rather straightforward to verify that the expression 

BK = pl'Bt(h(x))+~ f t53(x,f(~))P~tBt(h(~)) d2~ (30) 

satisfies these requirements. 
The resulting expression of the spinor connection is given by 

AK = VK + BK(n+I++ n_I_) (31) 

Here the odd integers describe the coupling of the K/ihler potential to the 
spinors of  definite H chirality. The simplest possible scenario in which 
leptons are the only elementary fermions corresponds to the choice 
(n§ n_) = (0, 3) as shown in the first paper of the series. 

The proposed definition of the induced K~ihler potential, although 
based on natural requirements, is based on a guess. A more rigorous 
definition of  the induced K/ihler potential should be based on definition of 
the induced K/ihler structure in the configuration space SH. 

3.5.4. Coordinates for SH(t, 1) 

The formalism constructed in previous sections does not use explicit 
coordination of SH(1). One cannot however totally avoid the introduction 
of explicit coordinates to the space SH; for instance the definition of the 
integration measure necessitates the introduction of  the proper metric tensor, 
and thus of an explicit coordination of SH(t, 1). In the following we 
introduce local coordinates of SH(t, 1) valid in some neighborhood of a 
given 3-surface X 3 and derive expressions for the metric tensor and related 
quantities in these coordinates. 

A set of  coordinates for SH(t, 1) expected to be applicable in some 
open neighborhood of a goint of SH(t, 1) are given by the Hilbert spaces 
Hv(X) of  the H-valued vector fields fx: 

f x  K = f k ( x )  (32) 

(a) of Int X 3 (X = Int X 3) orthogonal to Int X (interior degrees of  freedom) 
and (b) of ~X 3 (X = t3X 3) orthogonal to ~X a and parallel to Int X 3 (boun- 
dary degrees of freedom). 

Let the set {fxm} form orthonormalized complete basis for the space 
H at the surface X 3 

Ix k ,  hk~f x.Orx~ = E'Sm,. (33a) 

~, fkxm(X)ftxm(y) = P~3(X, y) (33b) 
m 
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where P~  is a projector to the appropriate part of the tangent space of H. 
The parameter E is equal to • depending on the nature of the vector field 
in question. It is important to notice that the orthonormality conditions 
hold only at the surface X 3. 

The expression for the metrix tensor in these coordinates can be 
deduced by expanding the infinitesimal deformations D H  K in the basis 
{ f K x m }  

D H  r" = ~, fnxm dc~: (34a) 
X,m 

dc ~x = I x  hkOCkxmDHk dV  (34b) 

The line element can be written thus written in the form 

DS2= }] HX.  dc~ dc~ (35a) 
X 

X K L H,.~ = HKLf x . . f  x .  (35b) 
x HKL can be identified as various parts of the proper where the tensors 

metric tensor and summation over indices implies integration over the 
coordinate variables. 

The orthonormalization conditions imply that the metric diagonalizes 
at the surface X 3 and that its elements are equal to + 1 depending on wether 
the particular vector field is time- or spacelike. 

The functional derivatives of the quantities f~Xm vanish and thus the 
transition to the coordinate representation is analogous to a linear coordi- 
nate change so that also metric connection and thus all connections trans- 
form as tensor objects in the transition. 

The volume element of SH(1) is given by the expression 

D V  = I] [DET (nx)]  1/2 H dc~: (36) 
X m 

in the neighborhood of X 3. Since the metric equals to unit matrix at the 
point X 3 of SH(t,  1) the condition DGT (H)  = 1 holds at X 3. 

4. SUPER FIELD FORMULATION 

The generalization of the concept of complex-valued probability ampli- 
tude to a Grassmann algebra valued probability amplitude ("scalar super 
field") offers an attractive possibility to describe both bosonic and fermionic 
states with arbitrary high fermion number using a single fieldlike quantity. 

In this section we shall develop the concept of the scalar superfield in 
finite-dimensional case. We treat the finite-dimensional case first, not only 
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because the treatment of the infinite-dimensional case reduces to a mere 
generalization of the finite-dimensional formalism but also because the 
concept of the scalar superfield to be introduced is not identical with that 
one commonly used in the context of the supersymmetric field theories 
(Volkov and Akulov, 1973; Wess and Zumino, 1974; Stelle, 1983). The 
generalization of the formalism to the infinite-dimensional case is performed 
and the uniqueness of the superfield d'Alambertian is discussed. 

4.1. Finite-Dimensional Case 

The key concept of the finite-dimensional super scalar field formulation 
is the local Grassmann algebra (Berezin, 1966) spanned by the "theta 
parameters," which are in 1 : 1 correspondence with the spinor basis associ- 
ated with a given point of H;  the superfield is simply a map associating 
with each point of H an element in this algebra. In the formulation of the 
superfield dynamics the concept of "supercovariant derivative" changing 
fermion number by one unit and that of "super d'Alambertian" as a 
generalization of the ordinary d'Alambertian are in a key role. 

4.1.1. Definition of  the Scalar Superfield 

Consider first the definition of the Grassmann algebra structure. Let 
{u~} be a complete orthonormalized basis of spinors at the point h of H. 
Define the conjugate basis {a,} via the formula 

a,~ = (u*y~ (37a) 

where 3, o is a flat space gamma matrix with the property that the condition 

~/0,yA,~0 = (~/A)+ (37b) 

holds. 
Associate with each element u~(ti~) an anticommuting theta parameter 

0,(ff~). The requirement that the quantitices O~u ~ and 0~ti" are invariant 
under vielbein rotations implies that theta parameters transform as spinors 
under vielbein rotations. 

Theta parameters generate a Grassmann algebra at the point h. By 
"globalizing" this concept one is led to the concept of the "Spinorial 
Grassmann algebra bundle" having as its fiber the local Grassmann algebra 
generated by the theta parameters. The spinorial Grassmann algebra bundle 
might be regarded as a spin-l /2 version of the Grassmann algebra bundle 
generated by 1-forms of H. 

Any element of the Grassmann algebra can be expressed as a poly- 
nomial of the theta parameters: 

S =  E S~I-.-~M~I...~,, 0 ~ ' ' ' "  ~ . . . .  ff~N (38) 
M , N  
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The coefficients of the various monomials are complex numbers and behave 
as multispinors under vielbein rotations since the Grassmann algebra ele- 
ments must be invariant under vielbein rotations. In the sequel we shall use 
the following shorthand notation for the expansion of the scalar superfield. 

S = SM, MOMO N (39) 

For the sake of completeness we restate the standard formulas defining 
integration in Grassmann algebra (Berezin, 1966): 

f O~ dOt3 = 8~,t3 , etc. (40a) 

I dO~=IdO~O~=O, etc. (40b) 

The integration measure in Grassmann algebra is given by 

DODO= 1-[ doe dO~ (41) 
t ~  

The scalar superfield can be defined as a map which associates to each 
point of the space H an element of the Grassmann algebra associated with 
that point. In a more advanced formulation the superfield is a section in 
the Grassmann algebra bundle. The component representation of the scalar 
superfield is obtained from the polynomial representation of the Grassmann 
atgebra element. 

An important feature differentiating between the concept of the scalar 
superfield used in the supersymmetric field theories and in the present 
context is that now the components of the scalar superfield are assumed to 
be complex numbers; in supersymmetric field theories the odd components 
are assumed to be anticommuting numbers (Volkov and Akulov, 1973; 
Wess and Zumino, 1974; Stelle, 1983; Berezin, 1966). 

The conjugation operation of the spinors can be generalized in an 
obvious way to a conjugation of the scalar superfield. The conjugation is 
performed according to the following rules: 

(i) Contract each index of each superfield component with the 
matrix 3, 0 . 

(ii) Perform complex conjugation. 
(iii) Replace 0~ with O~ and vice versa. 
We shall denote the conjugate of the scalar superfield S with the 

symbol 
A natural "scalar product" for two superfields $1 and $2 is given by 

the formula 

($1, $2) = f S1S2DODOx/~ dhh (42) 
J 
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5.1.2. Definition of Supercovariant Derivatives 

We define the supercovariant derivatives as direct generalizations of 
those introduced in the context of the Minkowski space supersymmetric 
field theories (Volkov and Akulov, 1973; Wess and Zumino, 1974; Stelle, 
1983; Berezin, 1966) 

0 
D~ = ~ + eiB~ Dk (43a) 

D,=--" 0 - eiB~Dk (e = +1) (43b) 
004 

Bk, = (Fk0)~ (43C) 

/ ~  = (oFk)~ (43d) 

The derivative Dk is the usual covariant derivative containing spinor connec- 
tion part and metric connection part. Theta parameters are by definition 
covariantly constant with respect to the covariant derivative Dk and the 
components of the scalar superfield transform as multispinors, that is, like 
tensor products of the appropriate number of ordinary spinors. 

The supercovariant derivatives defined act from the left. In the sequel 
also the supercovariant derivatives acting from the right will be needed and 
we shall use the symbols/3~ ~ D~ and D~ for the left and right derivatives, 
respectively. 

The following remarks concerning the properties of the supercovariant 
derivatives should be made. 

(i) The derivatives/5; and /5 ;  are Hermitian conjugates of each other 
with respect to the above defined scalar product in the space of the 
superfields. 

(ii) The order of the various factors in the terms B~ a n d / ~  is unessen- 
tial, since gamma matrices and theta parameters are covariantly constant. 
It should be noticed, that in the case of H = M 4 X CP2 the covariant deriva- 
tive must contain also the K~ihler potential. 

(iii) The anticommutators of the supercovariant (left) derivatives are 
given by the formulas 

e 8 - - k  - - l  { D~, D I~} = -e6B~Bt3Fkl (44a) 
- - e  - - 6  k 1 { D~, De} =-eSB~Bt~Fk~ (44b) 

{D=, D~} = - i ( e  + ~)F~Dk k , + e6B~Bt3Fkt (44c) 

Fkl = { Dk, Dr} (44d) 

When space H is flat so that the curvature form of the spinor connection 
vanishes, the spinor covariant derivatives D~ and D~ anticommute and D~ 
and D~ anticommute to a translation. 
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4.1.3. Super d'Alambertians 

The most general super d'Alambertian in the case of nonflat space is 
expected to be of the following form 

[] = ~ a~[]~ + b ~  (45a) 
e 

e - 6  7~ = D~D~ (45b) 

[]~ = D,~D,~ (45c) 

where the parameters a~ and b~ are real numbers. 
When the space H is fiat the operators []~ and -[]~ are equal as the 

equation 

[ ~  +De = ff z kl FklO (46) 

The operator [] is indeed derivable from a variational principle defined 
by a Lagrangian, which is (i) Hermitian with respect to the conjugation 
S ~ S and (ii) quadratic with respect to the superfield. 

Since the covariant derivatives "~ -" D~ and De are Hermitian conjugates 
with respect to the scalar product defined earlier [formula (42)] the following 
variational principle satisfies these requirements and leads to the expected 
form of the super d'Alambertian: 

S = I- LDODffx/-h dnh (47) 

S(a,D,D,~ + b~D~D~)S (48) L = E -  
e 

The various arrows appearing in the formulas give the direction of the 
action of the supercovariant derivative in question. 

Notice that one can either (i) regard the field formed by the components 
of the superfield as a set of fields in H and satisfying the field equations 
derivable from the Lagrangian obtained by integrating over the theta para- 
meters in the super Lagrangian (so that the introduction of the anticomrnut- 
ing theta parameters can be regarded as an effective book keeping trick), 
or (ii) regard also the theta parameters as arguments of the superfield and 
derive the equations of motion using the generalization of the ordinary 
rules to obtain field equations from a given Lagrangian density. 

The field equations are expectedly given by 

~ S  = 0 (49) 

A nice way to get rid of the nonuniqueness related to the choice of the 
super d'Alambertian is based on the observation that the super 
d'Alambertians ~ allow a large set of vacuum solutions since any superfield 
annihilated by the rightmost supercovariant derivative, and thus satisfying 



30 Pitk~nen 

one of the conditions 

D : S  = 0 (50a) 

D~,S = 0 (50b) 

is a vacuum solution of the equations of motions as the study of a general 
expression for the conserved quantities reveals. 

The solutions satisfying this condition (known as chiral condition in 
literature; Volkov and Akulov, 1973; Wess and Zumino, 1974; Stelle, 1983) 
generate symmetries analogous to Abelian gauge transformations since one 
can add to an arbitrary solution of super d'Alambertian a chiral superfield 
and thus eliminate unphysical degrees of  freedom. Hence we shall call this 
symmetry Abelian super gauge invariance. 

Since the requirement of maximal symmetry fixes the super 
d'Alambertian essentially uniquely (the four maximally symmetric operators 
are physically equivalent), we shall in the sequel restrict our considerations 
to the super d'Alambertians of this type. 

4.1.4. Symmetries o f  the Superaction 

In the discussion of the symmetries we assume for definiteness that 
super d'Alambertian is of the form []~, e = 1 and shall drop the indices e 
in the sequel from the various formulas. 

When space H is flat the general solution to the chiral condition 

is given by the expression 

D~S = 0 (51) 

S = $1S2 (52a) 

Here $1 is an arbitrary function of the argument 

X k = h k + i Y  k (52b) 

y k  = t~Fk0 (52C) 

and the superfield $2 is of  the form 

$2 = SMO M (52d) 

Here the coefficients are constant multispinors. 
From the anticommutativity of the derivatives D~ and /3~ (when the 

space H is flat) it follows that also the fields satisfying the condition 

O~S =O (53) 
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are vacuum solutions. The general solution to the condition (53) is obtained 
by the replacements 

x k  ~ h k - i y  k 

0 ~ 0 ~  

in the formulas (52a) and (52b), respectively. 
The solution of the chiral condition (51) in nonflat case is of the same 

general form given by the equation (52a). 
The field $1 is obtained by the following recipe: 
(i) Taken an arbitrary function $1 of the argument X k defined by the 

equation (52b) and thus satisfying the chirality condition in flat case. 
(ii) Expand this function in Taylor series with respect to the argument 

yk defined in (52c) 
(iii) Replace the ordinary derivatives appearing in the coefficients of 

the expansion with covariant derivatives. 
The superfield $2 is of the same form as in the fiat case, the multispinor 

being now covariantly constant (and representable as a sum over products 
of covariantly constant spinors). 

It is important to notice that the covariant derivative /3~ does not 
anticommute with D,  and therefore super gauge invariance is lost if a term 
proportional to []~ is added to the super d'Alambertian unless the space 
H is flat. 

When the space H is fiat the super d'Alambertian N~ allows also 
supersymmetries as its symmetries (Volkov and Akulov, 1973; Wess and 
Zumino, 1974; Stelle, 1983). The supersymmetry transformations are defined 
as transformations of the form 

S ~ S exp(tJ) (54a) 

J = ~1~/)~ + ~b2~/~ ~ (54b) 

The quantities ~ and 02 are constant complex spinors rather than anticom- 
muting Grassmann numbers unlike the corresponding parameters appearing 
in the supersymmetries of the supersymmetric field theories. The operator 
J can be regarded as the infinitesimal generator of the symmetry and the 
arrows imply that the action of the supercovariant derivative is from right 
(parameter t is real). 

The nicest way to see that these transformations are symmetries is to 
show that the infinitesimal generator of the supersymmetry commutes with 
the supercovariant derivatives D~ a n d / ) ,  

IDa, J] =0 (55a) 

[z3o, j ]  = 0 (55b) 
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These conditions are indeed satisfied since the spinors appearing in the 
transformation formula are constant and since the various left and right 
supercovariant derivatives appearing in the commutator commute, when 
the space H is flat. The general expressions for the various commutators 
are given by 

= e~B~FklB~ (56a) 

[D;, ~ ]  -2iE(e+,~)r~r -k = Ee~B~ FkIBr (56b) 

as one verifies by a direct calculation. The factor E is a sign factor which 
equals to +1 and -1  for even and odd components of the superfield, 
respectively. The quantities B~, B~, and Fkz are defined in the formulas 
(43) and (44). 

The transformation obtained by replacing the spinors appearing in the 
flat space transformation formula with covariantly constant ones is an 
obvious candidate for the supersymmetry transformation in the nonflat case. 

In the general case space H does not allow covariantly constant spinors. 
Furthermore, from the formulas (56) it is also clear that the curvature of 
the space H breaks supersymmetry even in the case when covariantly 
constant spinors exist. Thus supersymmetry resembles Poincar~ invariance 
in the sense that the curvature of the space H breaks this symmetry. 

It should be emphasized that the concept of the supersymmetry in the 
present context differs from that used in the context of the supersymmetric 
field theories. First, the parameters appearing in the supersymmetry transfor- 
mation are not Grassmann numbers. Second, supersymmetries are sym- 
metries in the conventional sense of the word. The differences derive from 
the fact that the coefficients appearing in the expansion of the TGD 
superfield are ordinary complex numbers. 

4.2. Generalization to Infinite-Dimensional  Case 

The generalization of  the finite-dimensional formulation looks quite 
straightforward; one needs only to replace various finite index sets with 
infinite ones and, if needed, replace summations with integrations. There 
are however some complications resulting from the delicacies associated 
with the spinor structure of M4• CP2. 

4.2.1. Definition of the Grassmann Algebra Structure 

The definition of  the Grassmann algebra structure in S H  is a quite 
straightforward generalization of the finite-dimensional definition. 

Consider first the problem of defining a conjugation operation for the 
spinors of  SH(1).  Denote by the symbol X Int X 3 or any of its boundary 
components and let {~ .}  be the spinor basis associated with X. 
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Since the spinors of SH(1) are maps, which associate an H-spinor 
field to each X, it is natural to define the action of the spinor conjugation 
as that induced by the H-spinor conjugation defined earlier by the formulas 
(37). 

Thus the action of the spinor conjugation of the X part of the SH(1) 
spinor is defined by the formulas 

where the matrix F ~ is defined by the equation 

F O .  0 .  = (q xi  

(57a) 

(57b) 

Observe that also the action of the discrete "symmetries" (PitkSnen, 1981, 
1983) on SH(1) spinors can be defined by inducing their known action on 
spinors of H. 

Associate with each spinor field basis {qJ~} the sets {0F} and {0~} of 
theta parameters transforming under vielbein rotations as spinors of S H ( 1 )  
and generating an infinite-dimensional Grassmann algebra, denoted by the 
symbol GR in the sequel. 

A general element of the Grassmann algebra generated by the theta 
parameters is an infinite power series with respect to the various theta 
parameters. The coefficients of the series are complex-valued functionals 
of the surface X 3 transforming as multispinors in SH(1). 

The definition of the Grassmann algebra conjugation is identical with 
the finite-dimensional definition. The Grassmann algebra integration 
measure is defined to be the product of the integration measures associated 
with the various boundary components and interior: 

DODO = H DOxDOx (58a) 
X 

DOxDOx = [I dff~ dOE (58b) 
m 

Define superfield as a map from SH(1) to the Grassmann algebra GR. The 
component representation of the superfield is given by 

S = SM,NffMo N (59) 

In a more advanced formulation one should obviously define the superfield 
as a section in the "bundle" having as a fibre the Grassmann algebra 
generated by the theta parameters associated with interior and various 
boundary components. Notice however that the fiber spaces corresponding 
to different manifold topologies need not be isomorphic so that the structure 
in question is probably more general than bundle structure. 
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4.2.2. Definition of  the Super d'Alambertian 

The generalization of the formulas defining the supercovariant deriva- 
tives is straightforward. The supercovariant derivatives are defined by the 
formula 

0 
Dm= + iBmKHKLDL (60a) 

80m 

8 
15m = - -- iBmK H KL DL (60b) 

00m 

/Trek = ( 0FK ),, (6c) 

BmK = (FK0),, (60d) 

The formula for the spinor connection contains interior part and various 
boundary parts; in particular, it contains terms, which couple the interior 
and boundary degrees of freedom to each other. 

The action of the functional derivatives on the state functionals (in 
particular to the parts of the state functionals depending only on a single 
boundary component) can be derived by considerations similar to those 
used to derive expressions for metric and vielbein connections. 

It is important to notice that no explicit coordination of the space 
SH(1) has been introduced to define the supercovariant derivatives. 

The generalization of  the super d'Alambertian operators is straightfor- 
ward, when the various theta parameters are regarded as independent 
variables. The expressions for the general super action and for the general 
super d'Alambertian are formally identical with the finite-dimensional 
expressions once the index identification K = (k, x) is made and index 
summation is replaced with an integral over x and summation over k 

The requirement of the maximal super gauge invariance leads to a 
unique theory in general case. In case of M4• CP2 the addition of a 
CP-breaking term into the action is however possible; we shall later show 
that the requirement of maximal super gauge invariance fixes this term 
uniquely. 

4.2.3. Extension of  the Results to S H ( n )  

Hitherto we have defined the various concepts only for the case of 
SH(1). The extension of the results obtained to a general case is, however, 
straightforward since S H ( n )  is isomorphic to the Cartesian product of  n 
S H ( 1 ) : s  divided by the symmetric group Sn. 

The Grassmann algebra structure for S H ( n )  can be defined as the 
tensor product of the Grassmann algebras associated with different factors. 
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The total Hilbert space of  spinors is spanned by the direct sum of the spinor 
spaces associated with different 3-manifolds. The theta parameters associ- 
ated with various summands of course are assumed to anticommute. 

The superfields are generated by the products of the superfields associ- 
ated with the different factors and the super d'Alambertian for S H ( n )  
separates into a sum of the super d'Alambertians associated with the different 
factors. 

~ = E ~  (61) 
i 

Thus the single particle state functionals must be eigen states of the respec- 
tive super d'Alambertians and the sum of the eigenvalues must vanish: 

~S~ = l~S~ (62a) 

Y~ l~ = 0 (62b) 
i 

It is clear that the only physically allowed eigenvalues are vanishing since 
the mere presence of the other particles cannot change the spectrum of 
one-particle states. The eigenvalues for the various super d'Alambertians 
need not vanish unless one poses some special condition to the superspinors. 

It is easy to invent this kind of condition. One can pose chirality 
condition on spinors of H:  

I~9l~t ~--- E~/ ,  E = + 1 / - 1  ( 6 3 )  

In the theory without chirality condition both leptons and quarks are 
assumed to be elementary fermions and they correspond to two different 
chiralities possible for H spinors. 

In the simplest scenario satisfying the chirality condition leptons are 
the only elementary fermions, and quarks correspond to leptons in "pseudo- 
triplet" color partial waves as found in the first part of the series. 

The vanishing of the eigenvalues associated with the various single- 
particle super d'Alambertians is guaranteed by posing and chirality condi- 
tion on the superfield. This means that we define the matrix elements of 
the matrix F~x via the formula 

9 m ?1 
( r ~ ) ~ . .  = ( r 1 6 2  (64) 

and require that the contraction of F 9 with any index of the superfield is 
+I  or -1  depending on whether the index is fermionic or antifermionic. 

This condition implies that super d'Alambertian changes the chirality 
of the each component of the superfield and thus the only possible eigenvalue 
of the super d'Alambertian is equal to zero. 
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Thus a rather unexpected and physically highly nontrivial result follows 
from the mere requirement that that the theory has multiplicative superposi- 
tion in the sense that the solutions to the equations of motion in S H ( n )  
are superpositions of the products of single particle solutions to the 
equations of  motion. 

A second nice feature of the chirality condition is that field equations 
simplify considerably since the operator OOmO0,, annihilates the superfield 
identically. The reason is that this operator creates contractions between 
fermionic and antifermionic indices and these contractions vanish when 
the chirality condition is satisfied. 

4.2.4. Extension of  the Results to the Singular Manifolds 

We have now generalized the superfield formalism so that it applies 
in subsets of  S H  consisting of nonsingular 3-manifolds. Concerning the 
description of the interactions the subsets S H ( t l ,  t2) consisting of three- 
surfaces having topologies intermediate between manifold topologies t l  
and t2 play a central role. 

Since the superfields associated with the topologies tl  and t2 must be 
comparable in the singular limit there must be a relationship between the 
theta parameters associated with these topologies. 

This relationship can be derived by relating to each other the spinor 
bases associated with the topologies t l  and t2 at the singular limit and 
equating the quantities -m , " -  toxOm and toxOm associated with tl  and t2 in this 
limit. 

Let us derive the relationship between the theta parameters in some 
special cases. 

(a) The decay of  a closed 3-manifold to two closed 3-manifolds. 
Denoting the decaying 3-manifold by sl  and the product manifolds by s2 
and s3 we have the following relationship between the various spinor bases: 

I/tim ( '~2n11,2 -4- ('73hilt 3 = --,. ~-. - - - r .  ~ - .  ( 6 5 )  

The matrix relating the conjugate spinors is obtained from the matrix C~ n 
by complex conjugation. 

The coefficients Ck.. " are given by the overlap integrals 

kn f k r 1 Cm = (tO,) tO,. ddx (k--  2, 3) (66) 
Js k 

The relationship between the theta parameters is determined by requiring 
the continuity of the 1-fermion superfields 

m -1 , I . "~  - ,i.,. a-'3 (67) tOl Om = W2 t ' m  - -  W3 V m  
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This condition holds provided the "barred" theta parameters are related 
via the following formula: 

-k C k. ffl 0m = vm v.  (k = 2, 3) (68) 

The matrix relating theta parameters is a complex conjugate of the matrix 
-- kn Cm. 

(b) The decay of a single boundary component to two boundary 
components. It is clear that the theta parameters associated with the initial 
boundary component and the final boundary components are related in a 
similar manner as in the higher-dimensional case already treated. The theta 
parameters associated with the interiors are deduced by requiring the 
continuity of the 1-fermion parts of the superfields. 

The relationship between the interior theta parameters is thus given by 
the formula 

~'2rn ~ n --1 CmO. (69) 

where the coefficients C~, are given by the overlap integrals 

n f 2 ~ 1 C,. = (tp,~) ~b,,, d3x (70) J X 3 

5. CP-BREAKING MODIFICATION OF THE SUPER 
D'ALAMBERTIAN 

5.1. General Considerations 

One of the most exciting features of the proposed approach is its 
predictivity; the requirement of the maximal super gauge invariance leads 
to unique super d'Alambertian in the general case. In the case of the space 
M4x  CP2 one can however imagine a modification of the super 
d'Alambertian made possible by the special geometric properties of CP2. 

As shown in the first paper of the series, the covariantly constant KShler 
form of CP2 (Eguchi et al., 1980; Gibbons and Pope, 1978; Hawking and 
Pope, 1978) allows a modification of the ordinary Dirac equation for the 
spinor fields induced to a surface of H since one can replace the gamma 
matrices Fk or CP2 with modified gamma matrices 

Fk = (h t+ ilJ~)F, (71) 

Here 1 is an arbitrary real number. 
It is clear that this replacement allows to define a modified Dirac 

operator in CP2 and H;  also one can obtain a modification of the super 
d'Alambertian in H and in SH via this replacement. 
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What makes this modification so interesting is that it is CP-breaking 
(metric and K/ihler form are CP-even and CP-odd, respectively). Thus the 
special geometric properties of CP2 might provide an explanation for the 
mysterious CP-breaking effects observed in Nature (Cronin, 1981; Fitch, 
1981). 

In the sequel we shall first define the modified gamma matrices, Dirac 
operator, and super d'Alambertian in CP2, H, and SH. Furthermore, we 
shall show that for two special values of the parameter I (= +1) (i) it is 
possible to define a cohomology theory for the spinor fields of CP2 (and 
also of M4x CP2), and (ii) the Abelian super gauge invariance associated 
with the modified super d'Alambertian D~D~ is exceptionally large since 
the chiral superfields (/~12 = 0) have (in a certain sense local) supersym- 
metries as their dynamical symmetry group. 

5.2. Modified Gamma Matrices, Dirac Operators, Etc. 

In order to define the modified gamma matrices and to understand 
their basic properties recall that the so-called Kghler form J defines in CP2 
symplectic structure analogous to the symplectic structure of the phase 
space of classical mechanics. 

The two defining features of the K~ihler form needed in the sequel are 
the following ones: 

(i) The Kfihler form is covariantly constant. 
(ii) The square of the Kfihler form is the negative of the metric tensor 

JkrJ~ =--Skt (72) 

Since Kfihler form is covariantly constant the modified gamma matrices 
defined by the equation (71) are covariantly constant in CP2 (H). 

The anticommutator of the modified gamma matrices of H is given by 
the formula 

{Fk, I'l} = 2(mkt + (1 - 12)Skl) (73) 

This representation follows from the equation (72). 
For the special choice 1 = 1 / -1  these matrices commute to Minkowski 

metric noninvertible as a matrix in H. 
One can extend this definition also to the case of SH(1). The modified 

vielbein and gamma matrices of SH(1) are obtained by the replacement 

A " A  (74) ek "> ek 

in the general formulas defining the vielbein and gamma matrices of 
SH(t, 1). 
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Here the modified vielbein ~A of H is defined via the formula 

~A = (h~ + iIJtk)e A (75) 

The anticommutators of the modified gamma matrices are given by 

{FK, FL} = 2/4KL (76a) 

I7-IKL = I7-Ikl(X, y) = ( hsr-  12s,-s)G~ (76b) 

G~k~ = 83(x, y )prkp~+~ 83(x, f (~))83(y, f (~))P~kP~ d2~ (76c) 
,5 

Again it is found that for the special choices of the parameters the commun- 
tator is proportional to the appropriate projection of the Minkowski metric. 

The definition of the modified Dirac operator is obvious; one needs 
only to replace the gamma matrices appearing in these operators with the 
modified gamma matrices. It should be noticed that for l = +1/ -1  the square 
of the modified Dirac operator of CP2 vanishes identically. As a consequence 
this operator defines "spinor cohomology" in M4• C P  2 to be studied in 
more detail in the sequel. 

It should be noticed that the modified Dirac operator is not derivable 
from an action principle. The requirement of Hermiticity implies the form 

L = ~(I'(1)ff)k -- IDk['k(--l))qt (77) 

for the Lagrangian density differing from the ordinary Dirac Lagrangian 
density only by a total divergence. 

For spinors induced on a submanifold of H the Lagrangian of the 
form given by (77) is however not equivalent with the ordinary Dirac 
Lagrangian as found in the first paper of the series. 

It is important to notice that D+~(l) and D(l) are not Hermitian 
conjugates of each other since Hermitian conjugation effectively changes 
the sign of the parameter l: 

(D+~(l)) = L3(- t) (78) 

Thus the supercovariant derivatives must appear in combinations of type 
D(1)lSo,(-l),  etc . . . .  in the CP-breaking super d'Alambertian. 

As already mentioned the modification of the gamma matrices makes 
makes theory CP asymmetric. Since CP operation corresponds to complex 
conjugation in CP2 and since the metric and K~ihler form of CP2 are CP- 
even and -odd, respectively, the CP operation effectively changes the sign 
of the parameter/. 

5.3. Spinor Cohomology 

As already noticed the values +1 and -1 of the parameter l are in a 
distinguished position mathematically since the gamma matrices of H anti- 
commute to Minkowski metric for this special values of l and the square 
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of the modified Dirac operator of CP2 vanishes. This operator, denoted by 
the symbol d in the sequel, thus defines "spinor cohomology" in H. One 
can define closed (dqJ = 0), exact (ff = d01) and cohomologically nontrivial 
(closed but nonexact) spinors. FurthermorG one can define cohomology 
group as the linear space of the cohomologically nontrivial spinors. 

In order to understand the properties of the spinor cohomology it is 
advantageous to use complex coordinates (~1, ~2, ~ ,  ~ )  for CP2 (see 
Pitk~inen, 1983, and Eguchi et al., 1980). In these coordinates the operator 
d has a surprisingly simply form: 

d = 2F~D~ (79) 

Thus d is simply proportional to that half of the Dirac operator, which acts 
on the variables ~Tk. 

The square of d is given by the formula 

d 2 = 4E~rF~r (80) 

and vanishes since the curvature form of the spinor connection satisfies the 
conditions 

G l  = F~r=O (81) 

as can be verified by a direct calculation using the expression for the 
curvature form of the spinor connection given in Pitk~inen (1983) and Eguchi 
et al. (1980). 

From the representation of d in complex coordinates one can derive 
important information concerning the properties of closed spinors. 

(i) The set of closed spinors is closed with respect to the multiplication 
with analytic functions (functions of the variables ~k only). 

(ii) The spinors satisfying the condition 

D~r = 0 (82) 

are closed and good candidates for cohomologically trivial spinors. 
Clearly, these conditions can be regarded as a generalization of the 

analyticity conditions obtained by replacing ordinary derivatives with 
covariant derivatives. 

The integrability conditions associated with these equations are satisfied 
identically (!) by equation (80). 

Covariant constancy conditions can be solved in closed form. Equations 
(81) imply that spinor connection can be written in the form 

A~ = gg~l (83a) 

Ak = hh~ 1 (83b) 

where g and h are elements of the gauge group of the spinor connection. 
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The covariant constancy conditions can be written in the form 

(0~+ gg~l)tp = 0 (84) 

The spinors satisfying these conditions are of the form 

~b = gqj~(~k) (85) 

Thus these spinors are apart from the "gauge factor" g analytic functions 
of the variables ~k and we shall call them analytic spinors. 

We believe that the analytic spinors are just the cohomologously non- 
trivial spinors in spinor cohomology. It is probably easy to verify the 
correctness (or incorrectness) of this belief by explicit comparison of the 
exact spinors to analytic spinors. 

5.4. Extended Super Gauge Invariance of the Superaction in Critical Case 

In critical case (l = 1 for definiteness) the modified super d'Alambertian 
~q=D~(-1)/3~(1) (and any of the eight physically equivalent super 
d'Alambertians of this type) is characterized by an exceptionally large super 
gauge invariance. 

The extended Abelian super gauge invariance is closely related to the 
commutativity of the operator /5~(1) (hut not the super d'Alambertian!) 
appearing in the chiral condition with super symmetries generated by 
analytic spinors satisfying the condition 

D~b =0 (86) 

The general form of the supersymmetry is given by 

S ~ S exp(tJ) (87a) 

J = qJ~A~ + ~0~B~ (87b) 

As =/)~(1), B~ = / ~ ( 1 )  (87c) 

Here qJl and q'2 are analytic spinors and the operator exp(tJ) acts from the 
right. 

The condition for the supersymmetry invariance of the chiral condition 
is the commutativity of the operators As and B~ with the supercovariant 
derivative /5~ (1). 

The commutativity follows from the absence of the derivatives Dk in 
the operators As and B~ (complex coordinates are used!). First, the analytic 
spinors are effectively covariantly constant. Furthermore, the commutators 
[/5~, At3 ] and [ /~,  Bt3 ] are proportional to the quantities F~r, which vanish 
identically. 

It should be noticed that super symmetries are local in the sense that 
one multiply the parameter t in the transformation formula by an arbitrary 
analytic function of the variables ~k. 
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Furthermore, supersymmetries are not symmetries of the whole super 
d'Alambertian, since the operator D~(-1) does not annihilate analytic 
spinors and does not commute with A~ or B~ so that supersymmetries can 
be regarded as dynamical symmetries. 

A very general set of chiral vacuons are generated by the superfields 
of type 

S = & &  (88a) 

Here $1 is obtained by expanding an arbitrary function of the variables 
X k = h k d- i Y  k 

yk = 0~,~0 (88b) 

in power series with respect to the variables y k  and by replacing the ordinary 
partial derviatives in the coefficients of the expansion with covariant deriva- 
tives. 

The superfield $2 is of the form 

& = SMO M (88c) 

Here SM is an arbitrary analytic multispinor having vanishing covariant 
derivatives with respect to the variables ~k. 

We believe that the most general chiral superfield can be constructed 
as a superposition of the fields of the above type although we have no proof 
of this conjecture. 

5.5. Maximal Super Gauge Invariance Implies Unique CP-Breaking Super 
d'Alambertian 

We have found that the CP-breaking term in the super d'Alambertian 
of H = M 4 X CP2 leads to a suprisingly symmetric theory for the two values 
of the CP-breaking parameter. In addition, the resulting theory is essentially 
unique. 

The assumption that the super d'Alambertian defining the quantum 
theory in S H  is of the form leading to the maximally symmetric theory in 
the finite-dimensional case looks very natural for several reasons: 

(i) The C P  breaking is one of the most mysterious phenomena of 
Nature and the idea that the requirement of maximal symmetry leads to 
CP-breaking theory is esthetically very pleasing. Of course, the phenomenon 
of C P  breaking becomes a direct signature of the very special geometric 
properties of CP 2. 
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(ii) The finite-dimensional theory is expected to have something to do 
with the point panicle limit of the real theory in SH and by maximizing 
the symmetries of the pointlike one maximizes also the symmetries of the 
real theory. 

(iii) In the actual theory the supersymmetries become only approxi- 
mate symmetries since there are probably no covariantly constant spinors 
in SH and since the concept of the spinor analyticity probably does not 
make sense in SH. As a consequence some degrees of freedom, which are 
vacuum degrees of freedom in the pointlike limit become physical degrees 
of freedom in the realistic theory. 

This picture of symmetry breaking resembles the basic mechanisms of 
symmetry breaking of gauge theories based on the idea that initially gauge- 
like degrees of freedom physical degrees of freedom, when symmetry is 
spontaneously broken. An important feature differentiating between the two 
approaches is that in TGD symmetry breaking is caused by the curvature 
of the space SH and nonpointlike nature of the particles. 

6. CONSTRUCTION OF S MATRIX 

6.1. General Considerations 

The multiplicative superposition suggests the following formal pro- 
cedure for the construction of a unitary S matrix. 

(1) Construction of Bare 1-Particle States. The field equations are solved 
in the sets SH(t, 1) that in the open subset of SH consisting of connected 
3-manifolds with a fixed topology t. We define the bare one-particle states 
as state functionals restricted to SH(t, 1) and having the property that they 
are stationary solutions of field equations in SH(t, 1). 

In this context the meaning of the bare one-particle state is rather 
general; only the simplest 3-topologies are expected to correspond to 
elementary particles and the topologies obtained by forming connected 
sums of the simple topologies (say, by glueing particlelike 3-manifolds to 
a subset of a spacelike hyperplane of M 4) are  expected to correspond to 
(gravitationally or otherwise) bound states of elementary particles. 

We assume that the bare 1-particle states can be orthonormalized with 
respect to the conserved scalar product implied by the phase symmetry of 
the action and that this scalar product is positive definite, at least when 
restricted to the set of "physical states." Furthermore, single-particle state 
functionals are assumed to form a complete set with respect to this scalar 
product. 

(2) Construction of Bare Many-Particle States. By multiplicative super- 
position the products of one-particle state functionals solving field equations 
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in SH(t, 1) are solutions of  the field equations in SH(t, n) (set of n com- 
ponent 3-manifolds with fixed topologies). It is natural to define the bare 
n-particle states as state functionals, which vanish outside SH(t, n) and are 
superpositions of the products of one-particle state functionals in SH(t, n). 

The scalar product for single-particle states defines a natural scalar 
product for bare many-particle states. 

(3) Construction of Stationary States. Bare n-particle states are solutions 
of  field equations both inside and outside (trivially so) SH(t, n) but not in 
the boundaries of SH(t). Thus these states are not stationary and by the 
uncertainty principle are expected to disperse form SH(t, n) to other parts 
of  SH. This dispersion is observed as various particle reactions, which may 
change particle number and also the topological quantum numbers associ- 
ated with a single particle. By multiplicative superposition the stationary 
states must correspond to linear superpositions of bare n-particle states in 
SH(t, n). 

There is a natural correspondence between bare and stationary states: 
one can construct from an n-particle bare state a stationary state by continu- 
ing this state to the other topologically different sectors of  SH. The continu- 
ation of the bare n-particle state to a stationary state must be one valued. 
This requirement probably poses constraints on the spectrum of allowed 
bare states and might well lead to quantization conditions. 

(4) Definition of S Matrix. Bare n-particle states resemble the incoming 
states of the ordinary field theories; they have sharp particle number and 
they are not global solutions of the field equations. The stationary states in 
turn resemble the outgoing states since they are stationary solutions of  the 
field equa.tions and have no sharp particle number. Thus it is natural to 
define the S-matrix as a matrix transforming the bare and stationary states 
to each other. 

In the following sections we shall (a) formulate the continuity condi- 
tions stating that any bare state functional defined SH(t) equals to super- 
position of bare state functionals defined in SH(tl) in the set SH(t, t l )  
that is in the set of  singular manifolds common to the boundaries of SH(t) 
and SH(tl); 

(b) derive a formal solution to the continuity conditions in terms of 
certain overlap integrals over SH(tl, t2). As a result one obtains explicit 
expressions for couplings (say, electromagnetic coupling) as overlap 
integrals over SH(tl, t2); 

(c) derive from the one-valuedness requirement of the stationary state 
functionals a set of conditions, which are analogous to the conditions 
defining the duality concept familiar from the string models (Jacob, 1974; 
Chew and Rosenweig, 1978; Schwartz, 1985); 

(d) derive a general expression for the S matrix. 
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6.2. Formal solution of the continuity conditions 

In order to continue a given bare state functional defined in SH(tl) 
to a stationary state functional in SH one can use the continuity requirement 
of the state functional in the sets SH(t 1, t2) consisting of singular manifolds 
intermediate between the initial and final topologies. In this section we 
shall formulate the continuity conditions and derive a formal solution of 
the conditions. 

Let us first introduce some notations and definitions. 
Let V(ti) denote a basis of bare state functionals Sm(ti) defined in 

SH(ti), i = 1, 2. These state functionals are stationary solutions of the super 
d'Alambertian in the open set SH(t) of SH. The phase symmetry of the 
super d'Alambertian implies the existence of a scalar product, which we 
assume to be positive definite; the super gauge invariance of the super 
d'Alambertian might play an important role in guaranteeing the existence 
of a positive definite scalar product. Thus we can assume that bare state 
functionals form a complete orthonormalized set. 

Define integration measure in SH(tl, t2) by the natural integration 
measure associated with the metric of SH(tl, t2) obtained by inducing the 
metric of SH to its submanifold SH(tl, t2). Denote this integration measure 
by the symbol 

DX3(tl, t2) (89a) 

Define the integration measure over the theta parameters as the product of 
the theta parameter integration measures associated with manifolds with 
topologies t l  and t2 multiplied by delta functions forcing the various 
constraints between theta parameters; these linear constraints were derived 
in Section 4 [see formulas (65)-(70)]. Denote this integration measure by 
the symbol 

DO( tl, t2)DO( tl, t2) (89b) 

Furthermore, denote the product of these integration measures by the symbol 

DV( tl, t2) = DX3( tl, t2)DO( tl, t2)DO( tl, t2) (89c) 

With these preliminaries we are ready to derive a formal solution to the 
continuity conditions. The continuity conditions state that for two "neigh- 
boring" topologies ti, i = 1, 2, the orthonormalized state functionals belong- 
ing to V(t l )  [ V(t2)] are expressible as a linear combination of the corre- 
sponding state functionals belonging to V(t2) [V(t l ) ] :  

Sm(ti)=E S"(tj)Gnm(tj, ti) ( i~j)  (90a) 
n 
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These conditions can be expressed in a more concise form using matrix 
notation 

S( t i )=S( t j )G( t j ,  ti) ( i ~ j )  (90b) 

The components of the matrices G( t l ,  t2) and G(t2, t l )  are the unknown 
quantities we wish to solve. 

The matrices G(ti, tj) and G(tj, ti) are inverse matrices in the sense 
that the following equations hold true: 

G( ti, t j)G( tj, ti) : Id(  ti) (91) 

In order to solve the components of the unknown matrices form the 
continuity conditions (89) we multiply them with a given state functional 
Sm(ti) of V(ti)  and perform the integral over theta parameters and over 
S H ( t l ,  t2) (overlap integral over singular manifolds). Defining the matrices 
H(ti,  tj) (i, j = 1, 2) by the following formula, 

m n  

H ( ti, t j )=(Sm(  ti), S~( tj)) 

= f S~ ( t i )S~ ( t j )DV( t l ,  t2) (92) 

one can cast the continuity conditions in the following form: 

H(  tj, ti) = H(  ti, tk )G(  tk, ti) (93) 

Using the equations (91a) it is easy to verify that only two of these equations 
are independent of each other. For example, the equations corresponding 
to index pairs (i ,j)  = (1, 1) and (38) imply the remaining equations. 

If  the matrix H(ti,  tj) is invertible in the sense that there exists a matrix 
I(tj, ti) with the property 

I ( ti, t j )H ( tj, ti) = Id( ti) (94) 

then the unknown matrix G(ti, tj) can be solved from (93) and written in 
one of the following forms: 

G(tj, t i)= I(  tj, t k )H(  tk, ti) (95) 

Thus we have expressed the matrices G(ti, tj) in terms of overlap integrals 
of the bare state functionals over the set of singular manifolds, which are 
in principle calculable. 
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The assumption about the invertibility of the matrix H(ti, ti) is clearly 
a crucial step in the formal solution of the continuity conditions. The 
following argument based on a finite-dimensional analogy indeed shows 
that the invertibility requirement makes sense. 

(1) The solutions of the massless d'Alambertian associated with a 
finite-dimensional space H farm a complete set when restricted to the 
boundary of a suitable open submanifold of the space H. Examples are as 
follows: 

(i) The solutions of massless d'Alambertian in M 4 form a complete 
set when restricted to a spacelike hyperplane. 

(ii) The solutions of Laplace equation in the 3-ball of a given radius 
form a complete set when restricted to the surface of the ball. 

(2) If this phenomenon occurs also in the infinite-dimensional case 
one expects that the solutions of d'Alambert-type equations when restricted 
to a boundary of a suitable open submanifold of the space in question form 
a complete set. 

(3) The sets SH( t l ,  t2) do belong to the boundary of SH(t)  and thus 
the restrictions of SH(ti)  state functionals might well form a complete set 
in SH( t l ,  t2). 

6.3. One-Valuedness Requirement 

The continuation of the bare n-particle state function Sin(t) restricted 
to SH(t)  to a stationary state functional S~'(t) (having no sharp particle 
number) can be performed by applying the formal solution of the continuity 
conditions. Thus the stationary state functional can be written as a sum of 
bare state functionals 

nrn 

S'~( t) = Sm( t) + ~ S"( tj)G( tj, t) (96) 
~ n  

Here the matrices G(t, tj) can be decomposed into products of the matrices 
G(t, tj) associated with the continuations between "neighboring" 3-mani- 
fold topologies (there exists 3-surfaces having topology intermediate 
between to 3-manifold topologies): 

G( tj, t) = G( tj, tl )G( tl, t2) .  �9 �9 G( tm, t) (97) 

In general it is kinematically possible (the intermediate states in the continu- 
ation are "on mass shell states") perform the continuation t ~ tj via several 
paths and each of these paths must lead to the same final result. The 
uniqueness of the final result is guaranteed if the product of the matrices 
G(tj, t) associated with a given path of continuation depends only on the 
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initial and final topologies. Equivalently, the product of  matrices G associ- 
ated with a closed kinematically allowed path of continuations t ~  tm 
�9 �9 �9 tl  -~ t is always a unit matrix: 

G(t, t l ) G ( t l ,  t2) �9 �9 �9 G(tm, t) = Id(t)  (98) 

It should be emphasized that the continuations are strongly restricted by 
the kinematical constraints since the intermediate states of the continuation 
must be solutions of the field equations: thus all particles in intermediate 
states must be on mass shell particles. It might well happen that one- 
valuedness conditions pose strong restrictions on the allowed bare particle 
states (the impossibility of  continuing the free quark state functionals to 
one-valued state functionals in SH implies the nonobservability of free 
quarks ? !). 

One can represent the various continuations diagrammatically. The 
diagrammatic rules are the following: 

(i) Associate with each connected 3-manifold a line with labels describ- 
ing the topology of the 3-manifold and various quantum numbers of the 
corresponding bare state functionals. 

(ii) The particle number changing transitions have as the basic vertex 
the 3-particle vertex and the vertex is described by the matrix G. 

(iii) The vertices changing 3-manifold topology but preserving con- 
nectedness are described by a two-particle vertex described by the matrix G. 

In this manner one can associate a diagrammatic representation with 
each continuation via intermediate topologies. 

These diagrams differ from Feynmann diagrams in several respects. 
(i) The one-valuedness conditions state that all diagrams having same 

initial and final states are equivalent so that any reaction can be described 
by a unique minimal diagram. 

(ii) The particles appearing in intermediate lines are on "massshell 
particles" and therefore all topologically allowed diagrams are not possible 
kinematically. Thus the one-valuedness conditions are not so stringent as 
one might first think. 

The diagrammatic representation for 2 ~  2 reaction reveals that the 
one-valuedness conditions are analogous to the duality conditions familiar 
from the dual string models (Jacob, 1974; Chew and Rosensweig, 1978; 
Schwartz, 1985) stating that the sum over the resonances in the s-channel 
is equivalent to the sum over the exchanges in the t channel. 

It should be emphasized, however, that the one-valuedness conditions 
imply restrictions on the transition amplitudes only when both s- and 
t-channel reactions can proceed on shell. The assumption about crossing 
symmetry for 2 ~ 2-channel reactions might imply the duality conditions in 
their full strength. Motivated by the analogy with dual models we shall in 
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the sequel refer to the one-valuedness conditions as generalized duality 
conditions. 

The physical content of the generalized duality conditions is that one 
can regard all reaction mechanisms connecting given bare many-particle 
states to each other as physically equivalent. The predictions deriving from 
the generalized duality might serve as direct tests of the theory. 

6.4. Construction of  the S Matrix  

Since the relationship between bare and stationary states resembles the 
relationship between incoming and outgoing states in field theories it seems 
natural to define the S matrix as the matrix relating these two sets of sttates 
to each other. 

Whenever possible we shall use the shorthand notations Ira) and Ires) 
for the bare and stationary states, respectively. The bare states are assumed 
to be orthonormalized with respect to the scalar product, whose existence 
follows from the phase symmetry of the action. The scalar product is 
assumed to be positive definite: 

(m, n) : cSm,~ (99) 

The stationary states are not expected to be orthogonal as such and the 
scalar products between stationary states can be represented in a form of 
a matrix, 

(m.  n~) = (Id + G+ G+ + G+G)m.. (lOOa) 

Here we have used the following notations: 

Id =• Id(t) (lOOb) 
t 

G= ~ G(ti, tj) (lOOc) 
ti, t j  

G += ~ G+(ti, tj) (lOOd) 
ti, tj 

Since the matrix formed by the scalar products is Hermitian it is possible 
to perform a unitary transformation U making this matrix diagonal. It is 
clear that the diagonalizing transformation mixes stationary states corre- 
sponding to different topologies. We assume however that the mixing is so 
small that there exists a natural correspondence between the bare states I m) 
and the new diagonalized states Irfis). The diagonalization is necessary in 
order to define positive definite transition probabilities. 

In the orthogonalized basis the matrix formed by the scalar products 
has the form 

(r~., ns) = Z(m)am, n (101) 
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Here the constants Z (m)  are analogous to the wave function renormalization 
constants of  the ordinary quantum field theories. 

With these preliminaries we are ready to define the S matrix and its 
dual via the following formula: 

s .m = (n, m s ) / [ Z ( m ) ]  1/2 (102) 

The unitarity of the S matrix and thus the existence of positive definite 
transition probabilities follows from the assumption that the scalar products 
between the bare states are positive definite. 

In the orthogonalized basis the representations of  the S matrix in terms 
of the matrix G is given by the formula 

S,,, = Anm/[Z(m)]  1/2 (103a) 

A = (Id + G) U (103b) 

It is rather easy to demonstrate that the nontriviality of the matrix U is 
necessary in order to obtain a physically acceptable S matrix. Assuming 
that the U matrix is the identity matrix, the S-matrix elements between 
state functionals Sin(t) and Sn(t) are diagonal: 

(Sin(t), S " ( t ) ) :  6m,, (104) 

Thus the S-matrix would be nontrivial only for topology changing transition. 
For instance, for the scattering of two charged particles the S matrix would 
be trivial ! 

The mixing of different 3-topologies caused by the matrix U is necessary 
in order to explain Cabibbo mixing in the TGD framework. If different 
fermion families correspond to different boundary component topologies 
of a some 3-manifold having one boundary component then Cabibbo mixing 
can be identified as a mixing of different boundary topologies caused by 
the diagonalizing matrix U. 

7. SUMMARY AND OUTLOOK 

The construction of  a dynamic theory based on the basic ideas of TGD 
represented in earlier papers has been our principal object of interest during 
several years. The attempts to construct a dynamical theory based on the 
direct generalization of the functional integral formalism have had a limited 
success; this approach has produced only semiclassical arguments. 

In this paper we have adopted a new quantization philosophy based 
on the belief that the idea of constructing a quantum theory by quantizing 
a classical theory is the real source of difficulties. A concise representation 
of the new "quantization philosophy" is the statement "Do not quantize!" 
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Our attempt to realize this Philosophy relies on the observation that 
the ordinary Schr/Sdinger equation is derivable from the action principle 
and the existence of the S matrix follows from the phase symmetry of the 
action. 

This observation leads to the idea that quantum dynamics is defined 
by a "super d'Alambert equation" (states with arbitrary fermion number 
correspond to the solutions of the super d'Alambertian), derivable from a 
quadratic variational principle, in the sapce SH of the space like 3-submani- 
folds of the space H. 

A nice feature of this approach is that it predicts "everything." Since 
"massless" d'Alambert-type operators contain no arbitrary dimensionless 
parameters (linearity!) all dimensionless coupling constants must be predic- 
tions of the theory. Furthermore, all dimensional parameters must be related 
to the length scale defined by the size of the space CP2. 

A second nice feature of this approach is that it takes the equivalence 
principle to its extreme; one can regard quantum dynamics simply as a 
classical free field theory with phase symmetry defined in an appropriate 
configuration space. 

The nontriviality of the theory follows from uncertainty principle in 
space SH. Any state functional having a sharp particle number, that is, 
restricted to a submanifold of SH consisting of 3-manifolds with fixed 
number of  components with given topologies, is nonstationary and begins 
to disperse to other parts of SH with different particle numbers. This 
dispersion is observed as various particle number changing reactions. 

The technical realization of these ideas is attempted and proceeds in 
the following steps: 

(1) The geometrization of the space SH. This means defining of the 
metric, vielbein, and spinor structures in SH. These structures are induced 
from the corresponding structures of the space H. 

(2) Definition of the superfield concept. This is accomplished by 
introducing the spinor Grassmann algebra as an algebra generated by the 
"theta parameters" in one to one correspondence with a spinor basis in 
point of SH. A scalar superfield is defined as a field having values in spinor 
Grassmann algebra. 

(3) Definition of the super d'Alambertian. The concept is first defined 
in the finite-dimensional case and then generalized to the actual case of 
interest. It is found that the requirement of the so-called super gauge 
invariance leads to a unique super d'Alambertian in the general case. 

In the case of M 4 •  CP2 the K~ihler structure of CP2 makes possible 
the introduction of a CP-breaking term in the super d'Alambertian but it 
turns out that the requirement of a maximal symmetry for the "pointlike 
limit" of the theory (super d'Alambertian in H)  fixes the CP-breaking term 
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uniquely. The super d'Alambertian of H has (in a certain sense local) 
supersymmetry as a dynamical symmetry. 

Furthermore, it seems necessary to pose the chirality condition on the 
superfield. 

In the constructionn of the S matrix the concepts of bare and stationary 
state play central role. Bare states are superscalar fields restricted to an 
open subset of S H  consisting of 3-manifolds with a given number of  
components with given topologies and are stationary solutions only in this 
subset. Stationary states are obtained by continuing the bare state functionals 
to state functionals defined in whole SH. 

The continuity conditions making it possible to continue a bare state 
functional to whole S H  can be solved formally and the conditions guarantee- 
ing the uniqueness of the continuation process turn out to be analogous to 
the conditions defining the duality concept in the context of dual models. 

The S matrix can be defined as a matrix relating to each other the bare 
and the stationary states. The S matrix is unitary provided the scalar product 
associated with the super d'Alambert equation is positive definite; this 
requirement might lead to strong constraints concerning the choice of the 
space H. The calculation of the S-matrix elements reduces to the solution 
of the continuity conditions. Since the basis of the stationary states is not 
normalized to unity, quantities analogous to the wave function renormaliza- 
tion constants appear in the expressions for the transition probabilities. 

We believe that these long-waited successes at the formal level suffice 
to motivate future efforts to develop the theory. Besides developing the 
formalism there are indeed several problems to be studied. We mention 
only some of the most important: 

(i) Define and study the classical limit of the theory (classical orbit 
the 3-surface four surface extremizing some effective action?). 

(ii) Study the implications of the characteristic features of the S-matrix 
(intermediate particles are "on mass shell" particles; generalized duality). 

(iii) Try to relate the proposed formalism to functional integral for- 
malism. 

(iv) Study the properties of the CP-breaking super d'Alambertian in 
H (this might have something to do with the point particle limit of  the 
theory). 
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APPENDIX: THE EXISTENCE OF THE S MATRIX AND THE 
PHASE SYMMETRY OF THE VARIATIONAL PRINCIPLE 
ASSOCIATED WITH THE SCHRODINGER EQUATION 

The Schr6dinger equation for a particle moving in the potential V(x)  
is of the form 

OPO = 0 (Ala) 

OP = (i)++V2+ V) (Alb) 

This equation can be derived from the following variational principle: 

S = I L d3x dt (A2a) 

L = ~OPt) (A2b) 

The phase symmetry 

~b ~ exp(ia) ~b (A3) 

of the action implies the conservation of probability p defined as 

p = f fJO d3x (A4) 
d 

Let the set 

{~-trn (X)} (A5) 

form a complete orthonormalized basis of state functions at time t = 0 and 
let 0"( t )  be a state function satisfying the condition 

0re(x, 0) -- 0re(x) (A6) 

From the linearity of the Schr6dinger equation it follows that (t) can be 
expressed in the form 

0re(x, t ) = ~  Smn(t)O~(x) (A7) 
tl 

The requirement of probability conservation (A4) implies that the matrix 
S satisfies the unitary condition 

SS § = S+S = Id (A8) 

Thus the existence of a unitary S-matrix follows from phase symmetry. 
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